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Abstract 
 

 

 

In the last two years, a new delivery paradigm has emerged for transporting goods on the so- 

called last mile to households, pioneered by such services as Google Shopping Express, Amazon 

Prime, Instacart, and Walmart To Go, among many others. Such services reduce the need for 

households to travel because one can simply order products online and have them delivered 

quickly to one’s doorstep. However, it is not yet understood (or, more specifically, quantified) to 

what degree such services result in social benefits vis-a-vis congestion and carbon emissions. 

A major complication in studying problems of this kind is the difficulty of creating a model that 

is mathematically tractable enough to give useful insights as well as faithful to the original 

phenomenon being modelled. For example, one complicating factor in modelling household 

behavior is the existence of multi-stop trips made by households: on a given day, a person will 

often visit multiple locations on one outing (such as running errands on the way to or from one’s 

place of work), and each of these locations will usually have alternatives (e.g. there are usually 

multiple choices of which grocer or post office to use). Thus, the calculation of the cost of a 

multi-stop trip is more complicated than a mere direct trip to and from the various destinations 

and the household. In the current literature, this complication is handled by either simplifying the 

problem at hand or by introducing additional assumptions into the problem structure. This 

project applies tools from geospatial analysis, geometric probability theory, and mathematical 

optimization to develop an integrated model that predicts the changes in congestion and carbon 

footprint that result when households in a geographic region adopt (or reject) such delivery 

services. 
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1 Introduction

1.1 Background

One of the fundamental concerns in the analysis of logistical systems is the trade-off between localized,
independent provision of goods and services versus provision along a centralized infrastructure such as
a backbone network. On the one hand, service executed at a local level features the obvious benefits of
proximity and specialization, inasmuch as people and communities obtain things from locations that are
close to them. Conversely, by aggregating network flows via a backbone network, individuals and com-
munities are able to reap the benefits of economies of scale, economies of agglomeration, and economies
of density.

One phenomenon in which this trade-off has recently been made manifest is the transition of busi-
nesses from traditional brick-and-mortar stores to retail sales facilitated via e-commerce [6, 33, 36];
particular recent examples include Google Shopping Express, Amazon Prime, Instacart, and Walmart To
Go [10, 12, 21, 40], among many others. As discussed in [43] for the case of grocery delivery,

There’s still a lot of debate over what works and what doesn’t. Is it a good idea to have
a warehouse for food storage, or ask the customers to pick up their food? How much should
delivery cost? How often and where should online grocery companies deliver?

In the past, the costs associated with delivery service have been so big – huge ware-
houses and refrigerators, gas-guzzling trucks traveling door to door ... that the math has
never worked out[.]

1.2 Problem description

The goal of this project is to apply tools from geometric probability theory to derive a more nuanced
model of the costs of multi-stop trips taken by a household as a function of the number of destinations
that one must visit and the number of alternatives of each of these that is available. We then apply this
analysis to predict the change in carbon footprint as households in a geographic region make increased
use of delivery services versus trips to brick-and-mortar stores.

1.3 Motivation

A major complication in problems of this kind is the difficulty of creating a model that is mathematically
tractable enough to give useful insights as well as faithful to the original phenomenon being modelled.
The specific topic that we emphasize throughout this project is the analysis of multi-stop trips made by
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Figure 1: The above image is reproduced from Figure 1 of [48], which compares the cost of direct trips
to and from a central location (at left) with travelling salesman tours that visit multiple locations (right).

households: on a given day, a person will often visit multiple locations on one outing (such as running
errands on the way to or from one’s place of work), and each of these locations will usually have alterna-

tives (e.g. there are usually multiple choices of which grocer or post office to use). Thus, the calculation
of the “cost” of a multi-stop trip is more complicated than a mere travelling salesman tour or a sequence
of direct trips to and from the various destinations and the household. For example, one might be willing
to travel a long distance to visit a bank that is farther away than the nearest available branch if it is lo-
cated more closely to other businesses that they will also visit (say, by virtue of being located in a central
business district or shopping center).

In the current literature, this complication is handled by either simplifying the problem at hand or
by introducing additional assumptions into the problem structure. For example, in the recent paper [48],
the authors perform a detailed computational study that estimates the changes in net CO2 emissions
that result by introducing grocery delivery services in Seattle, Washington. As suggested in Figure 1 of
that paper (which we reproduce here in Figure 1 as well), the authors do not consider the possibility of
multi-stop trips and compare the cost of a direct trip between one’s house and a store to the marginal
cost incurred by adding oneself to a travelling salesman tour that services many households. As another
example, the paper [34] acknowledges the importance of multi-stop trips (which they call “trip chaining”)
in calculating carbon footprints, and assumes constant values for trip lengths, such as 12.8 miles for an
average shopping trip by car and a constant number of stops:

Shopping can be part of a wider combined trip and involve only a minor detour. We
assume that where a shopper undertakes trip chaining, the shopping component of the trip
makes up a quarter of the overall total mileage.

A third example can be found in [47], which considers a closely related problem in which a customer
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receiving a package can specify multiple locations at which the delivery service may drop off the package
(e.g. “please drop off my package at my home, my work, my gym, or my friend’s house”). The analysis
therein is based on Monte Carlo simulation and is highly sensitive to problem specifics, and the issue of
trip chaining at the household level is addressed by assigning a fixed amount of trip chaining to estimate
marginal costs (the authors also cite [11], which makes a similar assumption):

Generally, social network members will not participate or choose the burden of pickup
if they have to go to a pickup point solely for the purpose of making a pickup for another
person. Pickup trips for social network actors can be regarded as a chain event and is a
determining variable. We assumed a 100% trip chain to additional mileage for pickup in
both PLS and SPLS – in other words, the entire detour distance for pickup is attributed to the
package. By contrast, previous research has applied a 0% trip chain effect for pickup. [11]

1.4 Structure of the report

The rest of this report is organized as follows: in Section 2, we present a literature review, and Section
3 describes our problem of interest formally. Section 4 defines various experimental models to which
our analysis can be applied, and Section 5 summarizes the key managerial insights that can be obtained
from this analysis. Section 6 shows how to revise this analysis to take into account so-called “inbound-
and-outbound” costs from departing and returning to one’s house, which yields a new set of managerial
insights in Section 7. Finally, Section 8 presents the major conclusions from this project.

1.5 Notational conventions

In this report we will consider a planar region R with area A, which is usually assumed without loss of
generality to be the unit square. We assume that R has a population of N people, who perform n tasks
each day, and there are k locations at which each task can be performed (in Section 3.2, we further allow
k itself to vary for each task). The cost per mile of delivery trucks along the backbone network is given
by φ and the cost per mile of passenger vehicles is given by ψ . We will also make use of some standard
conventions in asymptotic analysis:

• We say that f (x) ∈ O(g(x)) if there exists a constant c and a value x0 such that f (x)≤ c ·g(x) for
all x≥ x0,

• We say that f (x) ∈ Ω(g(x)) if there exists a constant c and a value x0 such that f (x) ≥ c ·g(x) for
all x≥ x0,

• We say that f (x) ∈Θ(g(x)) if f (x) ∈ O(g(x)) and f (x) ∈Ω(g(x)), and
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• We say that f (x)∼ g(x) if limx→∞ f (x)/g(x) = 1.

When necessary, we will clarify this notation in some particular cases because we are interested in limit-
ing behavior that concerns two values, the number of locations n and the number of choices k, and such
notation is known to introduce complicated ambiguities [16, 24].

2 Literature review

This project is primarily concerned with continuous approximation models for transportation problems
and is therefore in the company of [13, 15, 25, 26, 38, 39], for example. We are particularly interested in
the asymptotic behavior of a certain Euclidean optimization problem, the generalized travelling salesman

problem (generalized TSP), and as such our analysis is closely related to such papers as [8, 20, 41, 45].
One particularly related result can be found in [5], which studies the asymptotic behavior of the “TSP on
sparse subsets”, which is similar to our generalized TSP.

The generalized TSP is a reasonably well-known combinatorial problem and has been studied for
almost 50 years [44]. The primary focus of study on this problem has been on the rapid solution of
particular problem instances in a combinatorial setting [9, 31, 37, 42, 49], whereas our work is focused
more on limiting behavior. For our purposes, the generalized TSP arises organically as a way of studying
the impact of multi-stop trips, or “trip chaining”. The seminal paper [3] studies this phenomenon from
a theoretical perspective by describing a particular utility function at the household level that is justified
with empirical travel data. A subsequent paper, [28], develops a model of destination choice that employs
the “prospective utility” of a destination zone as its “attraction measure”. The paper [22] builds a variety
of logit models in order to study the potential barrier that trip chaining creates in attracting car users to
switch to public transport.

The intent of our work is to better understand the trade-off between centralized and decentralized
distribution schemes. Our work could be said to follow naturally from [34, 47, 48], for example, and
would also fit in the company of [14], all of which study this same trade-off in one form or another.

2.1 Summary of key facts and findings from related work

This brief section introduces two previous geometric results that are closely related to the problem that
we will study in the following section.

Lemma 1. For any set of n
′

points x1, . . . ,xn′ contained in a square of area A
′
, the length of the optimal

TSP tour through x1, . . . ,xn′ , denoted TSP(x1, . . . ,xn′ ), satisfies TSP(x1, . . . ,xn′ ) ≤
√

2A′n′ + 7/4
√

A′ <

α1
√

A′n′ , where α1 = 2.7.
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Proof. See [18, 27].

This result can be stated more strongly in a probabilistic fashion as in the celebrated Beardwood-

Halton-Hammersley (BHH) Theorem:

Theorem 2. Suppose that {X1,X2, . . .} is a sequence of random points i.i.d. according to the uniform

distribution defined on a compact planar region R with area A. Then with probability one,

lim
N→∞

TSP(X1, . . . ,XN)√
AN

= β ,

where β is a constant.

Proof. See for example [8, 41, 46].

It is additionally known that 0.6250≤ β ≤ 0.9204 and conjectured that β ≈ 0.7124; see [7, 19].

3 Problem statement and formulation

The main combinatorial object that we will use to model household trips is the generalized TSP tour,
defined as follows:

Definition 3. Given n sets of points X1, . . . ,Xn in the plane, the generalized TSP tour GTSP(X1, . . . ,Xn)

is the shortest cycle that contains one element from each point set Xi.

See Figure 2 for an example. Clearly, when each point set is a singleton (i.e. Xi = {xi} for all i), we
see that GTSP(X1, . . . ,Xn,) = TSP(x1, . . . ,xn). We will commit a minor abuse of notation throughout
this report by using the term GTSP(·) to refer both to the tour itself and to its length.

The GTSP is, of course, a generalization of the TSP, which has been analyzed extensively from a
geometric probabilistic perspective [41, 45]. However, many of these results for the TSP cannot be gen-
eralized in a straightforward way to the GTSP. To give one example, page 30 of [46] establishes a simple
nearest-neighbor argument that explains why ETSP(X1, . . . ,Xn) ∈ Ω(

√
n) for independent, uniformly

distributed Xi in the unit square: for any point Xi, it can be shown that Emin j: j 6=i ‖Xi−X j‖ ∈ Ω(1/
√

n),
from which the desired result follows by summing over all n points. This does not carry over to the GTSP
because we have |X1|+ · · ·+ |Xn| points in total and we are summing over only n of them. It is also
worth noting that there are two kinds of limits of interest to us, namely the case where n→ ∞ and the
case where |Xi| → ∞ for all i, and the latter does not appear to have much connection to previous work
on the TSP. Our first result describes the limiting behavior where n→ ∞.
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Figure 2: A generalized TSP tour of six sets of points X1, . . . ,X6, with X4 outlined for purposes of
clarity.

3.1 Analysis of the case n→ ∞

The following theorem describes the behavior of the GTSP when we fix |Xi| = k for all i and we let
n→ ∞:

Theorem 4. Let X1, . . . ,Xn denote n sets of points, each having cardinality k, and suppose that all nk

points are distributed independently and uniformly at random in a region R having area A. Then the

expected length of a generalized TSP tour of X1, . . . ,Xn satisfies

EGTSP(X1, . . . ,Xn) ∈Θ(
√

An/k)

as n→ ∞ with k fixed. In particular, there exist constants α1 < 2.7 and α2 > 0.0681 such that, for any

k, there exists a threshold n̄ such that EGTSP(X1, . . . ,Xn) ≤ α1
√

An/k and EGTSP(X1, . . . ,Xn) ≥
α2
√

An/k whenever n≥ n̄.

The upper bound that EGTSP(X1, . . . ,Xn)≤ α1
√

An/k is a fairly straightforward generalization of
the result from [18] and we prove it presently; we will prove the lower bound that EGTSP(X1, . . . ,Xn)≥
α2
√

An/k afterwards because we will require an additional combinatorial lemma.

Proof of the upper bound. Assume without loss of generality that A = 1, and make an additional further
assumption that R is the unit square (generalizing the argument to arbitrary regions R is a routine task
that we omit for brevity): let m be an even integer and consider the path P obtained by traversing
the width of R horizontally a total of m times, starting at the upper leftmost corner of R and moving
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downward by an amount 1/m−1, as shown in Figure 3a; it is obvious that the length of P is simply m+2.
Given a collection of point sets X1, . . . ,Xn in R, we can perturb P to form a new path P

′
that visits

one point from each point set Xi by simply inserting a pair of vertical line segments between P and
the nearest point (measured only in the vertical direction) in each Xi, as shown in Figure 3a. Of course,
the vertical distance between P and any arbitrary point x ∈Xi simply follows a uniform distribution
between 0 and 1/2(m−1), and therefore we see that the vertical distance d between P and its nearest
neighbor in Xi (again, in the vertical sense) satisfies

E(d) =
1/2(m−1)

k+1
.

Our objective is therefore to select a value m so as to minimize the total length of P plus these additional
n displacements, i.e. to minimize

m+2+2n ·
1/2(m−1)

k+1
where we have an additional multiplier “2” since each vertical displacement consists of an outbound and
and inbound trip. As n becomes large, we see that the optimal m satisfies

m∗ ∼
√

n
k+1

,

which results in a total length that satisfies

length(P
′
)∼ 2

√
n√

k+1
< 2
√

n
k

which proves that EGTSP(X1, . . . ,Xn)≤ α1
√

An/k.

To prove the lower bound that EGTSP(X1, . . . ,Xn) ≥ α2
√

An/k, we must first introduce a combi-
natorial lemma:

Lemma 5. Let L ⊂ Z2 denote an m×m square integer lattice in the plane, let n≥ 2 be an integer, and

let ` > 0. Let P denote the set of all paths of the form {x1, . . . ,xn}, with xi ∈L for each i, and whose

length does not exceed `. Then

|P| ≤ m2 ·
(
`+n−1

n−1

)
·
(

8`
n−1

)n−1

.

Proof. We thank Douglas Zare. Note that we have allowed “replacement” in the construction of P , i.e.
we are also considering paths in which xi = x j for some (i, j) pairs. We note that any element P ∈P
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(a) (b)

Figure 3: In (3a), we show the path P , which traverses the region R horizontally a total of m = 8 times.
In (3b), we show the perturbed path P

′
, where we have n = 3 point sets Xi consisting of k = 4 points

each.

can be uniquely described by specifying the triplet (x,d,q) defined as follows:

• The point x ∈L is simply the first member of P .

• The n-tuple d= {d1, . . . ,dn} represents the distance travelled from each point to the next, measured
in the `∞ norm. In other words, for a path {x1, . . . ,xn}, we have di = ‖xi+1− xi‖∞. Note that dn is
not defined according to this definition; we therefore define dn := `−∑

n−1
i=1 di, so that ∑

n
i=1 di = `

for all valid d. Obviously, we have 0≤ di ≤ ` for all i.

• The (n−1)-tuple q = {q1, . . . ,qn−1} represents the “angles” between pairs of points. Specifically,
given a point xi and a corresponding distance di, we see that there are at most 8di possible places
where xi+1 could be located (since xi+1 must lie on the boundary of a square of side length 2di

centered at xi). The element qi specifies which of these is the correct location of xi+1.

An example of this is shown in Figure 4. We will bound |P| from above by looking at the set of all
triplets (x,d,q) such that x ∈L , ∑

n
i=1 di = `, and qi ≤ 8di for all i. Assume without loss of generality

that ` is an integer, and let D denote the set of all permissible n-tuples d. By construction, of course, D

is simply the set of all integer n-tuples {d1, . . . ,dn} such that di ≥ 0 and ∑
n
i=1 di = `. Given any d ∈ D ,

let d′ denote the n-tuple defined by setting d
′
i = di +1 for all i. We then see that ∑

n
i=1 d

′
i = `+n and that
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Figure 4: Construction of a triplet (x,d,q) by enumerating distances between points with respect to the
`∞ norm.

1≤ d
′
i ≤ `+n for all i. Each d′ corresponds to a selection of n−1 elements out of `+n−1 possibilities.

Thus, we see that

|D | ≤
(
`+n−1

n−1

)
.

It is simpler to bound the set Q of all valid (n− 1)-tuples q. For any fixed d, the number of possible
choices of q is at most 8n−1

∏
n−1
i=1 di. By the AM-GM inequality, using the fact that ∑

n−1
i=1 di ≤ `, we see

that

8n−1
n−1

∏
i=1

di ≤ 8n−1

(
n−1

∑
i=1

di

n−1

)n−1

=

(
8`

n−1

)n−1

and thus

|Q| ≤
(

8`
n−1

)n−1

.

Finally, since there are m2 choices of the initial point x in the triplet (x1,d,q), we conclude that P

satisfies

|P| ≤ m2 ·
(
`+n−1

n−1

)
·
(

8`
n−1

)n−1

as desired.

We are now ready to prove the lower bound of Theorem 4:

Proof of the lower bound of Theorem 4. We will again assume that the service region R is the unit square,
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and we will then let L denote a lattice within R of the form{
0,

1
m
,

2
m
, . . . ,

m−1
m

,1
}
×
{

0,
1
m
,

2
m
, . . . ,

m−1
m

,1
}
.

It is immediately clear that for any path P := {x1, . . . ,xn} ⊂ R, there exists a path in L obtained by
rounding the terms of P to their nearest neighbor in L whose length is within n/m of the original path.
Thus, it will suffice to prove the lower bound of Theorem 4 for the special case where all of the elements
of the sets Xi lie in elements of L , and study the limiting behavior as m→ ∞.

We first see that there are at most kn total distinct subsets of the form {x1, . . . ,xn}, with xi ∈Xi for
each i. For each of these subsets, there are n! different orderings, and we therefore conclude that there are
at most n! · kn valid paths that visit one point from each of the subsets Xi. By applying the union bound,
we see that

Pr(GTSP(X1, . . . ,Xn)≤ α2
√

n/k) = Pr(one of the n! · kn valid paths has length ≤ α2
√

n/k)

≤ n! · kn Pr(length(P)≤ α2
√

n/k)

where P is the path obtained by selecting the first element from each set Xi and visiting these elements
in a sequence chosen uniformly at random. By construction, we see that P is simply a path that is
sampled uniformly at random from the collection of all possible paths between n points taken from L .
Of course, we can see immediately that there are exactly m2n of these. By scaling the lattice of Lemma 5
by a factor of 1/m (i.e. our lattice L ), we see that there are at most

m2 ·
(

mα2
√

n/k+n−1
n−1

)
·

(
8mα2

√
n/k

n−1

)n−1

≤ m2 ·
(mα2

√
n/k+n−1)n−1

(n−1)!
·

(
8mα2

√
n/k

n−1

)n−1

paths of length α2
√

n/k through our lattice L and therefore

limsup
m→∞

Pr(length(P)≤ α2
√

n/k) ≤ limsup
m→∞

m2 · (mα2
√

n/k+n−1)n−1

(n−1)! ·
(

8mα2
√

n/k
n−1

)n−1

m2n

= (8α
2
2 )

n−1 · nn−1

(n−1)! · (n−1)n−1 · kn−1

=⇒ Pr(GTSP(X1, . . . ,Xn)≤ α2
√

n/k) ≤ n! · kn · (8α
2
2 )

n−1 · nn−1

(n−1)! · (n−1)n−1 · kn−1

= k · (8α
2
2 )

n−1 · nn

(n−1)n−1 .
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The above quantity approaches 0 as n→ ∞ because 8α2
2 < 1. Thus,

EGTSP(X1, . . . ,Xn) ≥
(

1− k · (8α
2
2 )

n−1 · nn

(n−1)n−1

)
α2
√

n/k

= α2
√

n/k−
√

k ·8n−1
α

2n−1
2 · nn+1/2

(n−1)n−1

∼ α2
√

n/k as n→ ∞

which proves the desired lower bound as desired.

The proof above completes our analysis of the GTSP for the case where the number of point sets,
n, becomes large, and the cardinalities |Xi| are all fixed and equal to some value k. The next section
describes the case where n is fixed and the cardinalities |Xi| become large.

3.2 Analysis of the case |Xi| → ∞

This section studies the limiting behavior of the GTSP when we assume that the number of sets, n, is
fixed, and the cardinalities of each set Xi become large. In order to describe these n cardinalities in terms
of a single parameter, we assume that |Xi| = ki = tqi, where q > 0 is a vector that sums to one, and we
let the single parameter t approach infinity.

Theorem 6. Let X1, . . . ,Xn denote n sets of points, each having cardinality ki > 0, and suppose that

all ∑
n
i=1 ki points are distributed independently and uniformly at random in a region R having area A.

Further assume that ki = tqi for all i (where q is a probability vector), and let kG = (∏n
i=1 ki)

1/n =

t(∏n
i=1 qi)

1/n be the geometric mean of the ki’s. Then the expected length of a generalized TSP tour of

X1, . . . ,Xn satisfies

EGTSP(X1, . . . ,Xn) ∈ O

(√
An
kG

)
and

EGTSP(X1, . . . ,Xn) ∈Ω

(√
An

kn/(n−1)
G

)
as t→ ∞ with n and q fixed. In particular, there exist constants α1 < 2.7 and α2 > 0.0681 such that, for

any n≥ 2, there exists a threshold k̄ such that

EGTSP(X1, . . . ,Xn)≤ α1

√
An
kG

(1)
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and

EGTSP(X1, . . . ,Xn)≥ α2

√
An

kn/(n−1)
G

(2)

whenever kG ≥ k̄. In addition, the upper bound (1) can be tightened as follows:

EGTSP(X1, . . . ,Xn)≤ α1

√
An

kn/(n−1)
G

· (n2 logkG + logn)
1

2(n−1) (3)

whenever kG ≥ k̄.

Proof. As in the proof of Theorem 4, we will assume that the service region R is the unit square. The
proof of the upper bound (1) proceeds as follows: since we are examining the limiting behavior of
EGTSP(X1, . . . ,Xn) for large kG, we can divide the region R into kG squares �1, . . . ,�kG of area 1/kG.
By Lemma 1, we see that if one of the kG squares �i happens to contain an element from each of the n

point sets X1, . . . ,Xn, then GTSP(X1, . . . ,Xn) ≤ α1
√

n/kG. If none of the squares have this property,
then as a crude upper bound we simply use GTSP(X1, . . . ,Xn)≤ α1

√
n, so that

EGTSP(X1, . . . ,Xn)≤ pα1
√

n/kG +(1− p)α1
√

n ,

where p is the probability that one of the kG squares contains an element from each Xi. Thus, our goal
is now to show that p→ 1 at a sufficiently rapid rate as kG→ ∞.

Our proof now requires a Poissonization argument [46]: for each of the kG boxes �i, let Y i
1, . . . ,Y

i
n

denote n point sets uniformly and independently distributed within �i, where |Y i
j | follows a Poisson

distribution with mean λ j := k j
kG

=
q j

(∏n
i=1 qi)1/n ; we write. If we define point sets Y1, . . . ,Yn by setting

Y j =
kG⋃
i=1

Y i
j ,

then it is immediately obvious that E(|Y j|) = k j for all j; it is also easy to verify that the distribution of
the point sets X1, . . . ,Xn is the same as the distribution of the point sets Y1, . . . ,Yn, conditioned on the
event that |Y j|= k j for all j (see page 100 of [35], for example). For a particular box �i, the probability
that �i contains at least one element from each of the sets Y j is

Pr(�i contains at least one from each Y j) = Pr(|Y i
1| ≥ 1) · · ·Pr(|Y i

n| ≥ 1)

=
n

∏
j=1

(1− e−λ j)
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and therefore,

Pr(none of the boxes �i contains at least one from each Y j︸ ︷︷ ︸
=:E

) =

[
1−

n

∏
j=1

(1− e−λ j)

]kG

.

By the law of total probability, we have

Pr(E) =
∞

∑
k′1=0

· · ·
∞

∑
k′n=0

Pr
(

E
∣∣∣ |Y1|= k

′
1∩·· ·∩ |Yn|= k

′
n

)
Pr
(
|Y1|= k

′
1∩·· ·∩ |Yn|= k

′
n

)

and therefore in particular,

Pr(E)≥ Pr
(

E
∣∣∣ |Y1|= k1∩·· ·∩ |Yn|= kn

)
Pr(|Y1|= k1∩·· ·∩ |Yn|= kn) .

We next observe that

Pr(|Y1|= k1∩·· ·∩ |Yn|= kn) =
n

∏
j=1

Pr(|Y j|= k j)

=
n

∏
j=1

kk j
j

k j!
e−k j

>
1

en
√

k1 · · ·kn
,

where the last inequality holds because k
′
! < e

√
k′(k

′
/e)k

′
for all positive integers k

′
(see Lemma 5.8 of

[35]). We therefore conclude that[
1−

n

∏
j=1

(1− e−λ j)

]kG

= Pr(E)> Pr
(

E
∣∣∣ |Y1|= k1∩·· ·∩ |Yn|= kn

)
︸ ︷︷ ︸

1−p

1
en
√

k1 · · ·kn
,

or in other words,

1− p <

[
1−

n

∏
j=1

(1− e−λ j)

]kG

en
√

k1 · · ·kn . (4)
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It then follows that

EGTSP(X1, . . . ,Xn) ≤ pα1

√
n

kG
+(1− p)α1

√
n

≤ α1

√
n

kG
+α1
√

n

[
1−

n

∏
j=1

(1− e−λ j)

]kG

en
√

k1 · · ·kn .

Our proof is therefore complete if we can show that, for any fixed n, we have

α1

√
n

kG
+α1
√

n
[
1−∏

n
j=1(1− e−λ j)

]kG
en√k1 · · ·kn

α1

√
n

kG

→ 1

or equivalently that [
1−

n

∏
j=1

(1− e−λ j)

]kG

enk(n+1)/2
G → 0

as kG→ ∞. Taking natural logarithms, this is equivalent to proving that

kG log

(
1−

n

∏
j=1

(1− e−λ j)

)
+n+

n+1
2

logkG→−∞

as kG→ ∞. Since 0 < e−λ j < 1 for all j, we have 0 < 1−∏
n
j=1(1−e−λ j)< 1, which guarantees that the

inner term of the logarithm above is always negative. The limit above therefore holds, which completes
the proof of the upper bound (1).

In order to prove the tighter upper bound (3), the argument is nearly the same, except that we instead
divide the region R into b(kG) squares �1, . . . ,�b(kG) of area 1/b(kG), where we set

b(kG) =
kn/(n−1)

G

(n2 logkG + logn)
1

n−1
.

In the interest of brevity we will simply write b instead of b(kG). Applying precisely the same reasoning
as before, the counterpart to inequality (4) is now

p > 1−

[
1−

n

∏
j=1

(1− e−k j/b)

]b

en
√

k1 · · ·kn ,
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so that

EGTSP(X1, . . . ,Xn)≤ α1
√

n/b+α1
√

n

[
1−

n

∏
j=1

(1− e−k j/b)

]b

en
√

k1 · · ·kn .

Our proof is therefore complete if we can show that, for any fixed n, we have

α1
√

n/b+α1
√

n
[
1−∏

n
j=1(1− e−k j/b)

]b
en√k1 · · ·kn

α1
√

n/b
→ 1

or equivalently that [
1−

n

∏
j=1

(1− e−k j/b)

]b

en
√

k1 · · ·kn
√

b→ 0

as kG→ ∞. This is a straightforward algebraic calculation that we omit for brevity.
To prove the lower bound (2), we apply Lemma 5 again: as in the proof of Theorem 4, we let L

denote a lattice within R of the form{
0,

1
m
,

2
m
, . . . ,

m−1
m

,1
}
×
{

0,
1
m
,

2
m
, . . . ,

m−1
m

,1
}

and we assume that all of the elements of the sets Xi lie in elements of L (recall that we are assuming
that m is arbitrarily large). By scaling the lattice of Lemma 5 by a factor of 1/m (i.e. our lattice L ), we
see that the number of paths in L whose length does not exceed length ` is at most

m2 ·
(

m`+n−1
n−1

)
·
(

8m`

n−1

)n−1

≤ m2 · (m`+n−1)n−1

(n−1)!
·
(

8m`

n−1

)n−1

for all ` > 0. Thus, if P is the path obtained by selecting the first element from each set Xi and visiting
these elements in a sequence chosen uniformly at random, we see that

limsup
m→∞

Pr(length(P)≤ `) ≤ limsup
m→∞

m2 · (m`+n−1)n−1

(n−1)! ·
( 8m`

n−1

)n−1

m2n

=
8n−1`2n−2

(n−1)!(n−1)n−1 .

The number of all possible GTSP tours through X1, . . . ,Xn is at most n!∏
n
i=1 ki = n! · kn

G, and therefore,
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it follows from the union bound that

Pr(GTSP(X1, . . . ,Xn)≤ `) ≤ n! · kn
G ·

8n−1`2n−2

(n−1)!(n−1)n−1

= n · kn
G ·

8n−1`2n−2

(n−1)n−1 .

We now set `= c
√ n

kn/(n−1)
G

with c =
√

6/24 to obtain

EGTSP(X1, . . . ,Xn) ≥

1−Pr

GTSP(X1, . . . ,Xn)≤ c
√

n

kn/(n−1)
G

 · c√ n

kn/(n−1)
G

≥ c
(

1− (8c2)n−1 · nn

(n−1)n−1

)√
n

kn/(n−1)
G

≥ 0.0681
√

n

kn/(n−1)
G

for n≥ 2 as desired, which completes the proof.

Remark 7. The problem described in Theorem 4 is closely related to the BHH Theorem (i.e. Theorem 2),
which corresponds to the special instance of our problem where k = 1. For the purpose of studying the
household-level economies of scale obtained by multi-stop trips, we assert that Theorem 6 is more rele-
vant. This is because a typical person rarely visits more than, say, 10 destinations in a given day, whereas
there are likely to be much more than 10 banks, grocery stores, and so forth in a given metropolitan
region. By performing numerical simulations based on [32] for small n and assuming that |Xi|= k is the
same across all point sets Xi, we adopt the approximation

GTSP(X1, . . . ,Xn)≈ α

√
n

kn/(n−1)
,

where α = 0.29.

3.3 Clustering

Our analysis of the GTSP has assumed that all of the demand points are independently and uniformly
distributed in the unit square. Of course, there are many reasons why these assumptions might not hold,
such as the presence of spatial competition or economies of density. Fortunately, many phenomena of
this kind can already be addressed using our existing models by appropriately selecting the cardinalities
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(a) (b)

Figure 5: Figure 5a shows a tour of n = 20 neighborhoods; the optimal tour intersects each ball and is
the shortest such tour to do so. Figure 5b shows that one can always augment an optimal tour in such a
way as to touch the centers of each ball.

|Xi|: one example of this is the classical Hotelling model [23], which predicts that competing stores
will often locate themselves immediately next to one another. Thus, although there might be a total of ki

stores of type i in R, the total number of distinct locations of these stores would be k
′
i < ki, and it would

be more realistic to assume that |Xi| = k
′
i instead. Another example is the existence of shopping malls;

here, suppose that tasks 1, . . . , i∗ can be performed at shopping malls (with i∗ ≤ n, obviously), and that
X̄ denotes the set of shopping malls in R. One can then compare the cost of a tour that does not use a
mall, GTSP(X1, . . . ,Xn), with the cost of a tour that uses a mall, GTSP(X̄ ,Xi∗+1, . . . ,Xn). Which of
the two of these is shorter depends on i∗ and the cardinality of |X̄ |.

If it is truly necessary to explicitly enforce clustering of each point set Xi (such as a garment district
or an enclave such as a Chinatown or Little Italy), then an alternate model is required. One possibility
is the TSP with neighborhoods [17], which is a special case of the GTSP in which each point set Xi is a
ball Bi of radius r (as opposed to being a finite set of points) that is centered at a point xi, and the goal is
to find the shortest tour that touches every ball; see Figure 5a for an example. We will derive asymptotic
expressions for the TSP with neighborhoods with the help of the lemma below:

Lemma 8. Let B1, . . . ,Bn be a collection of balls of radius r, centered at points x1, . . . ,xn, all of which

are contained in the unit square. We have

TSP(x1, . . . ,xn)−2nr ≤ GTSP(B1, . . . ,Bn)≤min
{
TSP(x1, . . . ,xn) ,

⌈
1
2r

⌉
+3
}
.

Proof. The leftmost inequality holds because one can always make a tour that touches x1, . . . ,xn by
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augmenting the tour GTSP(B1, . . . ,Bn) with n line segments of length at most r, as shown in Figure
5b. The fact that GTSP(B1, . . . ,Bn) ≤ TSP(x1, . . . ,xn) is obvious. The fact that GTSP(B1, . . . ,Bn) ≤⌈ 1

2r

⌉
+ 3 is due to essentially the same idea as that expressed in Figure 3a; if we construct a tour that

traverses the width of R horizontally a total of d 1
2re times (with the “+3” term added because we also

travel one unit down and one unit up as before and because, if d 1
2re is odd, then we must make one

additional horizontal traversal), then we must touch each ball at some point.

Using the fact that TSP(x1, . . . ,xn) ∼ β
√

n for uniformly distributed points xi, we can write an ap-
proximation of Lemma 8 for large n as

β
√

n−2nr > GTSP(B1, . . . ,Bn) > min
{

β
√

n ,
⌈

1
2r

⌉
+3
}

where the notation “>” reflects the lower-order terms that we are dropping by introducing the square root
approximation. There are two aspects of the inequalities above that need correction: the first is that we
can tighten the left-hand inequality by using the fact that β

√
n′−2n

′
r >GTSP(B1, . . . ,Bn) for all n

′ ≤ n.
The lower bound is maximized when n

′
= β 2

16r2 , at which the bound evaluates to β
√

n′−2n
′
= β 2

8r . Thus,

a tighter lower bound is to use β
√

n− 2nr if n < β 2

16r2 and to use β 2

8r otherwise. The second correction
is that we should not require that r be constant, because this would result in both inequalities becoming
constant as n→ ∞. Thus, we represent r as a sequence indexed by n, {rn}, with the assumption that
rn→ 0 as n→ ∞. In summary, our new bounds are

β
√

n−2nrn if n < β 2

16r2
n

β 2

8rn
otherwise

> GTSP(B1, . . . ,Bn) > min
{

β
√

n ,
1

2rn

}
,

and it is straightforward to verify that the left- and right-hand sides of the inequalities above are always
within a factor of 4/β 2 of one another.

4 Experimental models

This section considers several models of increasing complexity. In each model, we assume that each per-
son has n “tasks” that they must complete each day (such as going to work, the grocer, and so forth), and
each of these tasks can be performed at k different locations. Thus, it would be sensible to postulate that
the distance travelled by each person in the region would be given by the expression GTSP(X1, . . . ,Xn),
where the point sets X j each denote the locations at which these tasks can be performed. By the analysis
in Remark 7, we would approximate this with the expression α

√
n/kn/(n−1). However, some potential
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error may result because this expression does not take into account the additional distance incurred by
leaving and returning to each person’s house, which we assume is distributed uniformly at random in the
region. Ideally, we would like to approximate this with the expression GTSP({xi},X1, . . . ,Xn), where
xi denotes person i’s home location, and we will do so in Section 6. For now, we simply remark that
this expression is somewhat unwieldy because it involves computing a generalized TSP tour of sets of
different magnitudes and thus involves a comparison of “inbound-and-outbound” costs of starting and
ending a trip as well as the “peddling” cost of moving between destinations on this trip (see [30] for a
detailed overview). Since the purpose of this study is to examine the benefits of multi-stop trips at the
household level, we instead opt to approximate each person’s distance travelled (from their house to their
n destinations) as α

√
n/kn/(n−1) as justified in Remark 7.

4.1 A simple example: luddites and shut-ins

The scenario we describe in this section is too simple to be of practical use, but is helpful as a “minimum
working example” that explains what factors affect the carbon footprint in a region most significantly.
Suppose that our city is a square region R of area 1 and has a population N. Each person has n locations
to visit daily (n−1 errands plus their home) and each errand has k possible locations where that errand
can be performed (e.g. there are k grocery stores and k banks in the region). Each of the N people in
the region corresponds to a point sampled independently and uniformly at random in R, and each person
belongs to one of two classes, either “luddites” or “shut-ins”, distinguished as follows:

• A luddite performs all of their tasks by themselves and drives to each of the n locations.

• A shut-in shops for everything online and remains stationary while packages are delivered to them.

Let the fraction of shut-ins in the city be p, implying that pN people are to be served by a delivery truck.
This truck performs a travelling salesman tour of pN points, whose length is approximately β

√
pN (for

large N) by Theorem 2, with β ≈ 0.7124. Therefore, the total carbon footprint due to these shut-ins is
φβ
√

pN, where φ represents the amount of emissions produced per mile driven by a delivery truck.
A luddite visits n places each day (their house, plus their n−1 tasks) and has k choices for each place

to visit. From Theorem 6 and Remark 7, as well as the introductory paragraph to this section, we adopt
the expression α

√
n/kn/(n−1) to model the distance traversed by each luddite, where α = 0.29 is the

proportionality constant of Remark 7. There are (1− p)N such people, and their total carbon footprint
is therefore ψ(1− p)Nα

√
n/kn/(n−1), where ψ represents the amount of emissions produced per mile

driven by a passenger car. The total carbon footprint of the region, regarded as a function of p, is then
given by

f (p) := φβ
√

pN +ψ(1− p)Nα

√
n/kn/(n−1) , (5)
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which is concave in p. Note that when p = 0 (i.e. there are no shut-ins and everyone does their own
driving), the carbon footprint is ψNα

√
n/kn/(n−1). We also note that

f (p)|
p= φ2β2kn/(n−1)

ψ2α2nN

= f (p)|p=0 = ψNα

√
n/kn/(n−1) ,

which (coupled with the concavity of f (·)) tells us that we must have p ≥ φ 2β 2kn/(n−1)

ψ2α2nN =: p0 in order for
the carbon footprint to be reduced as a result of using delivery services. It is also worth pointing out that
f (·) is maximized when p = p0/4, and attains a maximum value of

φβ
√

pN +ψ(1− p)Nα

√
n/kn/(n−1)

∣∣∣∣
p=p0/4

=
φ 2β 2

√
kn/(n−1)+4ψ2α2nN/

√
kn/(n−1)

4ψα
√

n
.

4.2 Marginal costs

The preceding model describes an extreme case in which each person in R either makes no use what-
soever of delivery services or uses delivery services exclusively. One middle ground that is also worth
studying is the case where people belong to two classes as before, but the two classes differ by only one
task:

• A luddite performs all of their tasks by themselves and drives to each of the n locations (this is the
same as in the preceding model).

• An early adopter visits n−1 locations and uses a delivery service for the remaining task.

A model of this kind is useful when one wants to understand the benefits of implementing a new delivery
service for a specific good, such as groceries; one example of this can be found in [48], which discusses
the consequences of introducing grocery delivery services in Seattle, Washington. A more nationalized
phenomenon would be the recent introduction of “last-mile” services such as Google Shopping Express
[12], which offers same-day deliveries facilitated by a specialized fleet of vehicles. If we let p denote the
fraction of early adopters in R, we then see that the total carbon footprint in the region is given by

f (p) : = φβ
√

pN +ψ pNα

√
(n−1)/kn/(n−1)︸ ︷︷ ︸

early adopters

+ψ(1− p)Nα

√
n/kn/(n−1)︸ ︷︷ ︸

luddites

= φβ
√

pN +
ψNα√
kn/(n−1)

[√
n− p(

√
n−
√

n−1)
]

≈ φβ
√

pN +
ψNα√
kn/(n−1)

[√
n− p

2
√

n

]
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where all terms (except for p) are the same as in (5), and we have used the series approximation
√

n−
√

n−1 = 1/2
√

n+O(n−3/2) in the last line. In the same manner as in the preceding section, we note that
when p = 0, the carbon footprint is ψNα

√
n/kn/(n−1), and also that

f (p)|
p= 4φ2β2nkn/(n−1)

ψ2α2N

= f (p)|p=0 = ψNα

√
n/kn/(n−1) ,

which tells us that we must have p ≥ 4φ 2β 2nkn/(n−1)

ψ2α2N in order for the carbon footprint to be reduced as a
result of using delivery services. Note that this threshold is greater than that of the preceding section
(which had a threshold of φ 2β 2kn/(n−1)

ψ2α2nN ) by a factor of 4n2; this is simply a mathematical manifestation of
the intuition that larger values of n (i.e. more trip chaining at the household level) lead to significantly
greater economies of scale at the household level. This in turn implies that delivery services must be
adopted at a larger rate in order for the carbon footprint to decrease.

4.3 Multiple delivery services

The model in Section 4.1 assumes that a single delivery truck serves all of the pN luddites. It is not hard
to model the case where there are multiple such services; the main difference is that there is a loss in
efficiency because competing delivery services do not consolidate their routes together, thus reducing the
benefits of economies of scale. Suppose that there are m delivery services in the region, and that service
i delivers goods to a fraction of δi of the shut-ins in the region, visiting δi pN customers in total (this
model assumes that each shut-in is uniquely associated with one delivery service). Therefore, applying
Theorem 2, we see that the work done by service i can be approximated as β

√
δi pN, and therefore the

total carbon footprint due to shut-ins is φβ
√

pN ∑
m
i=1
√

δi. Obviously, since ∑
m
i=1
√

δi ≥ 1 always holds,
we see that the carbon footprint within the region will only increase as a result of employing multiple
delivery services (provided that these services do not cooperate to share their loads efficiently). The total
carbon footprint of the region is then given by

f (p) := φβ
√

pN
m

∑
i=1

√
δi +ψ(1− p)Nα

√
n/kn/(n−1) = φ̄β

√
pN +ψ(1− p)Nα

√
n/kn/(n−1) ,

where we define φ̄ := φ ∑
m
i=1
√

δi, which reduces to the same problem as (5).

4.4 A probabilistic model

The model in this section improves on that of 4.1 by modelling customer behavior in a smoother way than
the luddite/shut-in dichotomy. Rather than assigning a set fraction of the population to be shut-ins, we as-
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sume that each customer uses a delivery service to do each of their n daily tasks with probability q. Thus,
the number of locations that the person actually visits is a binomial random variable, X , with parameters
n and q, and the expected amount of driving for that person is E(α

√
X/kn/(n−1)) = α√

kn/(n−1) E(
√

X).
If a person chooses to perform a task online, then a delivery truck will visit their house. Note that

the only circumstance under which a delivery truck does not visit their house is if that person chooses to
complete all n activities by driving to n different locations. Thus, the probability that a person is visited
by a delivery truck is given by p := 1−qn, and we see that the number of houses that the truck visits is
a binomial random variable Y with parameters N and p, and the expected distance that the delivery truck
travels is βE(

√
Y ). The total carbon footprint in the region is therefore

f (p) := φβE(
√

Y )+ψ
αN√

kn/(n−1)
E(
√

X) , (6)

where X ∼ B(n,q) and Y ∼ B(N, p). In order to simplify the above expression, the following lemma is
useful:

Lemma 9. Let X ∼ B(n, p) be a binomially distributed random variable. Then as p→ 0 with n fixed, we

have E(
√

X)∼ np, and as p→ 1 with n fixed, we have E(
√

X)∼√np.

If X ∼ B(n, p), then by definition we have

E(
√

X) =
n

∑
i=0

(
n
i

)
pi(1− p)n−i

√
i =

n

∑
i=1

(
n
i

)
pi(1− p)n−i

√
i

d
d p

E(
√

X) =
n

∑
i=1

(
n
i

)(
i
p
− n− i

1− p

)
pi(1− p)n−i

√
i

= n
[

1− p(n−1)
1− p

]
(1− p)n−1 +

n

∑
i=2

(
n
i

)(
i
p
− n− i

1− p

)
pi(1− p)n−i

√
i

d
d p

E(
√

X)

∣∣∣∣
p=0

= n

since the differential terms for i≥ 2 are all equal to 0. Thus, the approximation E(
√

X)≈ np is nothing
more than a first-order approximation evaluated at p = 0. To prove that E(

√
X) ∼ √np as p→ 1, we

observe that the series expansion for
√

x about the point x = 1 is given by

√
x = 1+

x−1
2
− (x−1)2

8
+O(x3)

which says that

E(
√

X)≈ 1− Var(X)

8
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for any random variable such that E(X) = 1, or equivalently,

E(
√

X)≈
√

E(X)

(
1− Var(X)

8

)
=
√

np
[

1− (1− p)
8np

]
∼√np as p→ 1

for any binomial random variable X , which completes the proof.
The preceding lemma allows us to conclude that, for values of p near 0 (which implies that q is close

to 1, i.e. very little delivery is used), we can approximate (6) by

f (p)≈ φβN p+ψαN
√

nq
kn/(n−1)

= N

φβ p+ψα

√
n(1− p)1/n

kn/(n−1)

 .

Note that according to this approximation, we have

d f
d p

∣∣∣∣
p=0
≈ N

(
φβ − ψα

2
√

nkn/(n−1)

)
,

which we expect to be positive since φβ and ψα ought to be approximately the same order of magnitude.
This tells us that initially, as people in R begin to make more use of delivery services, the total carbon
footprint in the region increases.

5 Experimental results I

In this section, we give a simple example of an instance of the model in Section 4.2 using estimates of
the relevant input parameters. This model seems to be the most timely, as evidenced by the prevalence of
“last-mile” delivery services such as Google Shopping Express, Amazon Prime, Instacart, and Walmart
To Go [10, 12, 21, 40]. Table 1 shows our estimates for parameters φ , ψ , α , and β , which we do not
expect (for the most part) to vary on the region being served. In order to estimate k for various regions,
we used census data obtained from [1] that gives the number of grocery stores in various metropolitan
regions; these numbers (as well as N, the populations of these regions) are shown in Table 2. Figure
6 shows plots of the total emissions, f (p), for four metropolitan areas. From Table 2, we see that the
critical thresholds p∗ are quite high, and in many instances, the household-level economies of scale are
high enough that even a 100% usage of delivery services is less efficient than leaving drivers to their own
devices (this corresponds to the entries in the table that are marked “> 1”). The alternative analysis in
the next section is somewhat more optimistic.
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Parameter Estimate Source

φ 1303 grams CO2
mile [29]

ψ 350 grams CO2
mile [4]

α 0.29 Numerical simulations based on [32]

β 0.7124 [7]

(a) Parameter estimates and their sources.

Table 1: Input parameter estimates for our numerical example.

Los Angeles-Long Beach-Anaheim, CA Metro Area

0 0.2 0.4 0.6 0.8 1
0.96

0.98

1

1.02

1.04

1.06

1.08

1.1

p

Chicago-Naperville-Elgin, IL-IN-WI Metro Area

Indianapolis-Carmel-Anderson, IN Metro Area

Provo-Orem, UT Metro Area

Figure 6: A plot of the change in total carbon footprint for four different cities, for the model described
in model in Section 4.2. Here we assume that n = 6. The value f (0) simply represents the total emissions
when no delivery services are used, and therefore when f (p)/ f (0) < 1 we find that delivery services
result in a net improvement.
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p∗ = 4φ 2β 2nkn/(n−1)

ψ2α2N

Region k N n = 3 n = 4 n = 5 n = 6 n = 7

Los Angeles-Long Beach-Anaheim, CA Metro Area 3358 13052921 > 1 > 1 > 1 > 1 > 1

Chicago-Naperville-Elgin, IL-IN-WI Metro Area 2889 9522434 > 1 > 1 > 1 > 1 > 1

Indianapolis-Carmel-Anderson, IN Metro Area 295 1928982 > 1 > 1 > 1 0.95 0.92

Salt Lake City, UT Metro Area 192 1123712 > 1 > 1 > 1 0.98 0.96

Tulsa, OK Metro Area 136 951880 > 1 0.98 0.81 0.76 0.75

Albuquerque, NM Metro Area 119 901700 > 1 0.86 0.72 0.68 0.68

El Paso, TX Metro Area 138 830735 > 1 > 1 0.95 0.89 0.88

McAllen-Edinburg-Mission, TX Metro Area 132 806552 > 1 > 1 0.92 0.87 0.86

Little Rock-North Little Rock-Conway, AR Metro Area 124 717666 > 1 > 1 0.96 0.90 0.90

Colorado Springs, CO Metro Area 83 668353 > 1 0.72 0.62 0.60 0.60

Boise City, ID Metro Area 73 637896 0.98 0.64 0.55 0.54 0.54

Provo-Orem, UT Metro Area 50 550845 0.64 0.44 0.40 0.39 0.40

Killeen-Temple, TX Metro Area 84 420375 > 1 > 1 > 1 0.97 0.97

Green Bay, WI Metro Area 43 311098 0.90 0.64 0.59 0.58 0.60

Clarksburg, WV Micro Area 25 94310 > 1 > 1 0.99 > 1 > 1

Elmira, NY Metro Area 24 88911 > 1 > 1 0.99 > 1 > 1

DuBois, PA Micro Area 22 81184 > 1 > 1 0.98 > 1 > 1

Table 2: The number of grocery stores k, the populations N, and the critical thresholds p∗ at which
emissions decrease due to adoption of delivery services. The first and second columns are obtained from
[1]. Here the cells marked “> 1” indicate that, even at 100% adoption of delivery services, the carbon
footprint of the region is still larger than the case where p = 0, i.e. no delivery services are used.
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6 Incorporating inbound-and-outbound costs

As described in the beginning of Section 4, the models we have described thus far have not paid special
attention to the “inbound-and-outbound” costs associated with leaving and returning to one’s home. This
section describes a result that is related to Theorems 4 and 6 in which we take a generalized TSP tour of
n point sets, X1, . . . ,Xn, in addition to a fixed point x0 (which represents a person’s home). Note that the
limiting behavior for fixed k and n→∞ is the same as in Theorem 4 because we are merely inserting one
additional point, and therefore it will suffice to consider only the limiting behavior for the case where n

is fixed and k→ ∞:

Theorem 10. Let X1, . . . ,Xn denote n sets of points, each having cardinality k, and suppose that all

nk points are distributed independently and uniformly at random in a region R having area A. Let x0

be a point in the interior of R. Then the expected length of a generalized TSP tour of {x0},X1, . . . ,Xn

satisfies

EGTSP({x0},X1, . . . ,Xn) ∈ O(
√

An/k ·
√

logk)

and

EGTSP({x0},X1, . . . ,Xn) ∈Ω

(√
An/k

)
as k→ ∞ with n fixed. Specifically, there exists a constant α3 > 0.136 such that the following statements

hold:

1. For any n, there exists a threshold k0 such that

EGTSP({x0},X1, . . . ,Xn)≤ α1
√

An/k ·
√

logk

whenever k ≥ k0, where α1 = 2.7 is the constant from Lemma 1.

2. For any n, there exists a threshold k0 such that

EGTSP({x0},X1, . . . ,Xn)≥ α3

√
An
k

whenever k ≥ k0.

Proof. Assume as in the previous proofs that R is the unit square. To prove Claim 1, consider a square �0

of area a := logk/2k centered at the point x0, and suppose that k is sufficiently large (i.e. that a is sufficiently
small) that �0 is entirely contained within R. Let p denote the probability that �0 contains at least one
element from each point set Xi, in which case we clearly have GTSP({x0},X1, . . . ,Xn)≤ α1

√
a(n+1)
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from Lemma 1. Since p = (1− (1−a)k)n, we therefore see that as k→ ∞, we have

EGTSP({x0},X1, . . . ,Xn) ≤ pα1
√

a(n+1)+(1− p)α1
√

n+1

=
α1

2

√
n+1

k
·

([
1− k−k

(
k− 1

2
logk

)k
]n(√

2logk−2
√

k
)
+2
√

k

)

∼ α1

2

√
n+1

k
·
[(

1−n
√

1/k
)(√

2logk−2
√

k
)
+2
√

k
]

≤
√

2α1

2

√
n+1

k
·
√

logk ≤ α1
√

n/k ·
√

logk

as desired.
To prove the second claim, we find it useful to revisit Lemma 5, and we again let L denote a lattice

within R of the form {
0,

1
m
,

2
m
, . . . ,

m−1
m

,1
}
×
{

0,
1
m
,

2
m
, . . . ,

m−1
m

,1
}
.

We first see that there are at most kn total distinct subsets of the form {x0,x1, . . . ,xn}, with xi ∈Xi for
each i ≥ 1. For each of these subsets, there are n! different orderings, and we therefore conclude that
there are at most n! · kn valid paths that originate at x0 and visit one point from each of the subsets Xi.
By applying the union bound, we see that for any `,

Pr(GTSP(x0,X1, . . . ,Xn)≤ `) = Pr(one of the n! · kn valid paths has length ≤ `)

≤ n! · kn Pr(length(P)≤ `)

where P is the path obtained by selecting the first element from each set Xi and visiting these elements
in a sequence chosen uniformly at random. By construction, we see that P is simply a path that is
sampled uniformly at random from P , the collection of all possible paths originating at x0 that visit n

additional points taken from the lattice L . Of course, we can again see that |P| = m2n. By scaling the
lattice of Lemma 5 by a factor of 1/m in the vertical and horizontal directions, there are at most(

m`+n
n

)
·
(

8m`

n

)n

≤ (m`+n)n

n!
·
(

8m`

n

)n
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paths in P whose length is at most `. Thus,

limsup
m→∞

Pr(length(P)≤ `) ≤ limsup
m→∞

(m`+n)n

n! ·
(8m`

n

)n

m2n

=
`2n8nn−n

n!
=⇒ Pr(GTSP({x0},X1, . . . ,Xn)≤ `) ≤ kn`2n8nn−n

for all `. We now set `= c
√

n/k, with c =
√

6/12, obtaining

EGTSP({x0},X1, . . . ,Xn) ≥
(
1− kn`2n8nn−n)`

=
1

12
·
√

6n(1−3−n)√
k

> 0.136
√

n/k ,

which completes the proof.

Remark 11. By performing numerical simulations for small n and large k in the same way as in Remark
7, we adopt the approximation

GTSP({x0},X1, . . . ,Xn)≈ α
′√

n/k ,

where α
′
= 0.47.

7 Experimental results II

In this section we present a revised numerical simulation that is entirely analogous to that of Section 5,
only we now incorporate inbound and outbound costs as in Theorem 10. Thus, whereas we previously
had a critical threshold of

p∗ =
4φ 2β 2nkn/(n−1)

ψ2α2N
,

we now see by a straightforward analysis that under the revised model, the critical threshold is instead

p∗ =
4φ 2β 2nk
ψ2(α

′
)2N

.

These thresholds are shown in Table 3. These are somewhat more encouraging than those of Section 5,
although we still see that a significant amount of adoption of delivery services is required. A recent survey
[2] of 22,000 homes suggests that approximately 13% of shoppers have purchased groceries online in the
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last 30 days, which happens to be close to the average of the entries of Table 3. This would suggest that,
at present, the benefits to carbon footprints due to delivery services are just beginning to be realized, if at
all.

8 Conclusions

We have conducted an asymptotic analysis of the generalized TSP tour of n sets of k points each in the
unit square, EGTSP(X1, . . . ,Xn), as k→ ∞ and as n→ ∞. For the case where k is fixed and n→ ∞,
our analysis that EGTSP(X1, . . . ,Xn) ∈ O(

√
n/k) and that EGTSP(X1, . . . ,Xn) ∈ Ω(

√
n/k) is tight

inasmuch as the lower and upper bounds have the same order. For the case where n is fixed and |Xi| →∞

for all i, our upper and lower bounds differ by a term of order (n2 logkG + logn)
1

2(n−1) , where kG is the
geometric mean of the |Xi|’s. We conjecture that, in this case, one actually has

EGTSP(X1, . . . ,Xn) ∈Θ

(√
An

kn/(n−1)
G

)
,

although this will clearly require further analysis. We have also analyzed the generalized TSP for the
case where one also has a singleton x0, that is, EGTSP({x0},X1, . . . ,Xn), and |Xi|= k for all i; in this
case we have upper and lower bounds that differ by a term of order

√
logk.

Numerical analyses of the preceding models, when applied to the problem of estimating the change in
carbon footprint that results from using delivery services, suggest that a considerable amount of adoption
of delivery services is necessary before one begins to see a decrease in carbon footprint. The reason for
this is simply that the economy of scale that is realized by delivery services requires a significant initial
level of adoption in order to compete with the “household-level” economy of scale that the customers
already possess, given their wide choice of locations to visit and the number of daily locations they visit.
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